On the Complementarity of the Consensus-Based Disorder Prediction
نویسندگان
چکیده
Intrinsic disorder in proteins plays important roles in transcriptional regulation, translation, and cellular signal transduction. The experimental annotation of the disorder lags behind the rapidly accumulating number of known protein chains, which motivates the development of computational predictors of disorder. Some of these methods address predictions of certain types/flavors of the disorder and recent years show that consensus-based predictors provide a viable way to improve predictive performance. However, the selection of the base predictors in a given consensus is usually performed in an ad-hock manner, based on their availability and with a premise that more is better. We perform first-of-its-kind investigation that analyzes complementarity among a dozen recent predictors to identify characteristics of (future) predictors that would lead to further consensus-based improvements in the predictive quality. The complementarity of a given set of three base predictors is expressed by the differences in their predictions when compared with each other and with their majority vote consensus. We propose a regression-based model that quantifies/predicts quality of the majority-vote consensus of a given triplet of predictors based on their individual predictive performance and their complementarity measured at the residue and the disorder segment levels. Our model shows that improved performance is associated with higher (lower) similarity between the three base predictors at the residue (segment) level and to their consensus prediction at the segment (residue) level. We also show that better consensuses utilize higher quality base methods. We use our model to predict the best-performing consensus on an independent test dataset and our empirical evaluation shows that this consensus outperforms individual methods and other consensus-based predictors based on the area under the ROC curve measure. Our study provides insights that could lead to the development of a new generation of the consensus-based disorder predictors.
منابع مشابه
An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملAn interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function
In this paper, an interior-point algorithm for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...
متن کاملPrediction of post-traumatic stress disorder based on perceived anxiety caused by coronavirus in nurses
Background and aims: The release of covid-19 has created a global health emergency in less than a few months around the world. The aim of this study was to predict Post-Traumatic Stress Disorder (PTSD) based on perceived anxiety caused by coronavirus in nurses of a hospital in Quchan city, Iran in 2020. Methods: In this descriptive correlational study, 100 nurses of a hospital in Quchan ...
متن کاملPrediction of Psychological Disturbances in Mothers of Children with Autism Spectrum Disorder based on Mindfulness and Rumination
Background and Purpose: Autism spectrum disorder is one of the most difficult childhood disorders that is characterized by persistent degeneration in social interaction, communication, repetitive behaviors, and limited interests. The multiple problems of these children cause family members, especially the mother, to be disturbed and tense. The purpose of this study was to predict the psychologi...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2012